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Recently, a quantum-mechanical proof of the increase of Boltzmann entropy in quantum systems that are
coupled to an external classical source of work has been given. Here we illustrate this result by applying it to
a forced quantum harmonic oscillator. We show plots of the actual temporal evolution of work and entropy for
various forcing protocols. We note that entropy and work can be partially or even fully returned to the source,
although both work and entropy balances are non-negative at all times in accordance with the minimal work
principle and the Clausius principle, respectively. A necessary condition for the increase of entropy is that the
initial distribution is decreasing �e.g., canonical�. We show evidence that for a nondecreasing distribution �e.g.,
microcanonical�, the quantum expectation of entropy may decrease slightly. Interestingly, the classical expec-
tation of entropy cannot decrease, irrespective of the initial distribution, in the forced harmonic oscillator.
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I. INTRODUCTION

Recently, it has become clear that the formulation of the
second law of thermodynamics in terms of the minimal work
principle holds as a quantum-mechanical theorem �1–4�.
That is, the unitary law of quantum-mechanical evolution
implies that the work W done by a classical external source
on an isolated quantum system is larger than or equal to the

value W̃ corresponding to the quasistatic limit. This is sum-
marized as

W � W̃ , �1�

where

W � TrĤ�tf��̂�tf� − TrĤ�ti��̂�ti� �2�

and �̂ is the density matrix. The result in �1� is of great
theoretical and practical relevance as it shows in a clear way
how thermodynamic laws already exist at the microscopic
quantum level. When the system is initially in a canonical
equilibrium, Eq. �1� can be derived from the Jarzynski equal-
ity �5,6�, but Eq. �1� holds in general for any initial equilib-
rium characterized by decreasing probabilities. Recently, it
has been proven that, under the same assumptions also the
Clausius formulation of the second law holds as a theorem in
quantum mechanics �3,7�. The approach, presented originally
by Tasaki and later rediscovered in �7�, is very novel if com-
pared to the traditional approaches, and it is strictly related to
the approach of �1–4�, summarized in Eq. �1�. The main
feature of the new approach is that it employs Boltzmann
entropy, which is a function of the energy of the system and
of the external parameters, instead of H entropy, Gibbs en-
tropy, von Neumann entropy, or Tolman entropy, which in-
stead are functionals of the system probability distribution
�or density matrix�. When studying the Boltzmann entropy,
the Clausius principle follows directly as a consequence of
the unitary and time-reversal symmetric quantum or classical
evolution �without any assumption that would break the

time-reversal invariance� in the same way as Eq. �1� does �7�.
It must be stressed that there are many different formula-

tions of the second law of thermodynamics, which are not all
equivalent �8�. Oftentimes the second law is understood as a
condition on the monotonic increase of entropy. The Boltz-
mann entropy approach that we study here instead is based
on the very first historical formulation of the second law of
thermodynamics in terms of entropy, namely the Clausius
principle, which states �8�:

“For every non-quasi-static process in a thermally isolated
system that begins and ends in an equilibrium state, the en-
tropy of the final state is greater than or equal to that of the
initial state, and for every quasistatic process in a thermally
isolated system, the entropy of the final state is equal to that
of the initial state.”

Note that this formulation does not imply that the entropy is
a monotonically increasing function of time: all it says is that
the final entropy is larger than the initial.

From a mechanical point of view,
�non-�quasi-static processes are modeled as �non�adiabatic
changes of an external parameter, on which the Hamiltonian
depends parametrically. Thus, the idea behind the present
approach is that of studying the average change of Boltz-
mann entropy due to the action of an external source of work
that makes the Hamiltonian time-dependent. Toda et al. �9�
note that during the nonadiabatic transformation, the distri-
bution of energies inevitably drifts and diffuses due to the
finite transition probabilities between different states �see
also �10��. They suggest that this mechanism is at the origin
of the second law. The work of Refs. �3,7� proves formally
that the drift and diffusion of energy are responsible for the
increase of Boltzmann entropy. The proof of this result is
almost identical to the proof of the minimal work principle
�1� given in �1,3,4�. A different proof, valid only for high-
dimensional Hamiltonian classical chaos, has been given by
Sasa and Komatsu �11�.

Here we study the Boltzmann entropy increase for an ex-
actly solvable model, namely the forced harmonic oscillator.
This has recently attracted the attention of Talkner et al., who
have reported on the statistics of work performed on the*Michele.Campisi@physik.uni-augsburg.de
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system �12�. Such a system can now be studied experimen-
tally by means of multisegmented optical ion traps �13�.

The paper is organized as follows. Section II is devoted to
a review of the quantum-mechanical proof of entropy prin-
ciple as given in �7�. In Sec. III, we apply it to the forced
harmonic oscillator. A discussion of the results is presented
in Sec. IV. In the Appendix, we offer a derivation of the
time-dependent quantum transition probabilities of the
forced harmonic oscillator based on Wigner functions.

II. QUANTUM-MECHANICAL PROOF OF THE CLAUSIUS
PRINCIPLE

Consider an isolated, nondegenerate, time-dependent
quantum system. Let

Ĥ�t� = �
k=0

K

�k�t��k,t��k,t� �3�

be the time-dependent Hamiltonian, where �k , t� are the in-
stantaneous eigenvectors and �k�t� are the corresponding in-
stantaneous eigenvalues. These are assumed to be nondegen-
erate at all times and to not cross each other.

Let the system be initially �that is at time ti� in an equi-
librium state described by a density matrix �̂�ti�
=�k=0

K pk�k , ti��k , ti�, which is diagonal over the Hamiltonian
basis 	�k , ti�
. Let the density-matrix eigenvalues be ordered
in a decreasing fashion,

pm � pn if m � n . �4�

This is an important assumption that is used explicitly in the
proof. As time passes, transitions will occur between the
quantum states according to the transition probabilities

�akn�ti,tf��2 = ��n,tf�Û�ti,tf��k,ti��2, �5�

where Û�ti , tf� is the unitary time evolution operator. As a
consequence, the density matrix evolves to some �̂�tf�. The
minimal work principle of Eq. �1� has been proven under

these assumption with work defined as W�Tr��̂�tf�Ĥ�tf�
− �̂�ti�Ĥ�ti�� �1,3,4�. Here instead we are interested in the
change in the expectation value of Boltzmann entropy.

In classical statistical mechanics, we have two possible
definitions for Boltzmann entropy, which are sometimes re-
ferred to as “surface” and “volume” entropies �14,15�. The
former is the logarithm of the instantaneous density of states
��E , t�, whereas the latter is the logarithm of the volume of
phase space enclosed by the instantaneous constant energy
hypersurface ��E , t�. The two are known to be equivalent in
the case of large systems with short-range interactions, but
when small systems are taken into account the equivalence
breaks �16� and the proper definition is the “volume entropy”
�7,14–25�,

Scl�E,t� = ln ��E,t� , �6�

��E,t� � �
H�q,p;t��E

d3Nqd3Np

h3N . �7�

Here we are interested in constructing the quantum counter-
part of Eq. �6�. Thus we proceed with its quantization. This is
accomplished by means of the semiclassical approximation.
In one dimension �1D�, the volume integral ��E , t� is the
reduced action �26�, which, according to the Bohr-
Sommerfeld quantization rule �27�, is quantized as

� =  pdq

h
= n +

1

2
. �8�

The operator that takes on these values over the Hamiltonian
eigenstates is evidently the following:

N̂�t� + Î/2, �9�

where N̂�t� is the quantum number operator defined as

N̂�t� � �
k=0

K

k�k,t��k,t� �10�

and Î is the identity operator. Thus the quantum version of
Boltzmann entropy is simply

Ŝ�t� � ln�N̂�t� + Î/2� . �11�

The same formula applies to multidimensional systems by
noting that the integral � of Eq. �6� counts the number of
quantum states with energy not above a certain energy E
=�n �28�. Assuming nondegeneracy, such a number is n+ 1

2 ,
where we set the convention that the ground state counts as
half a state �41�.

The definition in Eq. �10� is the generalization of the
harmonic-oscillator number operator a†a to any possibly
time-dependent and multidimensional quantum system with
nondegenerate energy eigenvalues.

The change of entropy between ti and some later time tf
reads

Sf − Si = Tr��̂�tf�Ŝ�tf� − �̂�ti�Ŝ�ti�� . �12�

The proof that this entropy change is non-negative can be
summarized as follows �see �7� for a detailed discussion�. Let
us denote the probability that the system is found in state n at
time tf by pn�, where evidently pn�=�k=0

K pk�akn�ti , tf��2. Simple
calculations lead to

Sf − Si = �
n=0

K

�pn� − pn�ln�n + 1/2� . �13�

Using the “summation by parts” rule �29�, Eq. �13� becomes

Sf − Si = �
m=0

K

ln
m + 3

2

m + 1
2
�
n=0

m

�pn − pn�� . �14�

Using the property of the coefficients �akn�2 of forming a
doubly stochastic matrix �i.e., �k=0

K �akn�ti , tf��2
=�n=0

K �akn�ti , tf��2=1 and �akn�ti , tf��2�0�, and the ordering of
probabilities �4�, it can be shown �4,7� that �n=0

m �pn− pn��
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�0, which, by noting that lnm+3/2
m+1/2 �0 in Eq. �14�, implies

Sf � Si. �15�

A. Remarks

Like Eq. �1�, Eq. �15� holds as a consequence of the laws
of quantum mechanics for every time-dependent nondegen-
erate quantum-mechanical system that is in an equilibrium
state described by decreasing probabilities at time ti. As such,
it is an exact nonequilibrium result. In case the perturbation
is adiabatic, the quantum adiabatic theorem would ensure
that no transition will occur between states with different
quantum number �30� so that pn�= pn and consequently Sf
=Si. Note that, like the Clausius principle, Eq. �15� in no way
implies that the expectation value of the entropy is mono-
tonically increasing. Equation �15� says only that after time
ti, the expectation value of the entropy operator will never be
less than the initial value. This does not rule out the possi-
bility that for two times t1� t2� ti one might have S1	S2.
The � sign in Eq. �15� does not stem from a breakdown of
the time-reversal symmetry of the dynamics but rather from
the fact that the initial state is of a special form: the density
matrix is diagonal and its eigenvalues are ordered in a de-
creasing fashion. In accordance with the minus first law �31�,
the asymmetry of thermodynamic laws is entailed in the
asymmetric character of the concept of equilibrium.

B. The classical limit

The classical limit is obtained from the quantum treatment
by letting the phase-space cell size vanish. In this limit, the
discrete quantity n+ 1

2 becomes the continuous quantity �,
and the probability pn becomes the probability density func-
tion P��� of having one member of the ensemble being on
an orbit that encloses a volume �. Accordingly, all sums
over n will be replaced with integrals over d�. The coeffi-
cients �akn�2 become the “classical transition probability”
A�� ,
 ; ti , tf� that a representative point which is on an orbit
that encloses a volume � at time ti will be found on an orbit
that at time tf encloses a volume 
 �42�. Accordingly, the
distribution at a certain time tf relates to the initial distribu-
tion Pti

��� through �7� Ptf
�
�=�d�A�� ,
 ; ti , tf�Pti

���. In
the classical limit, the quantum-mechanical requirement of
nondegeneracy �only one state per energy eigenvalue� be-
comes the requirement of ergodicity �only one trajectory per
energy level� �43�, and the requirement in Eq. �4� becomes
the requirement that Pti

��� be monotonically decreasing.
Then one obtains �7� �compare with Eq. �13��

Sf
cl − Si

cl = �
0

�

d��Ptf
��� − Pti

����ln � � 0. �16�

III. APPLICATION: FORCED HARMONIC
OSCILLATOR

Time-dependent harmonic oscillators have attracted much
attention recently in the field of quantum thermodynamics of
small systems �12,32,33�. They are particularly important be-

cause they can be solved exactly �34� and are relevant in
many applications, such as, for example, optical ion traps
�35�, which constitute a promising technological asset for the
implementation of quantum computers �13�. In this section,
we will study the change of expectation of Boltzmann en-
tropy for the driven harmonic oscillator. We first treat the
classical and quantum cases in general, and then we apply
them to specific forcing protocols.

A. Classical case

The Hamiltonian reads

H�x,p,t� =
p2

2m
+

m

2
�2�x −

f�t�
m�2�2

. �17�

For simplicity, we set m=1, �=1, ti=0, f�0�=0. The Hamil-
ton equations can be solved with the aid of Laplace trans-
forms. The solution reads

�x�t�
p�t�

� = � cos t sin t

− sin t cos t
��x0

p0
� + �S�t�

C�t�
� , �18�

where

S�t� = �
0

t

dt�f�t��sin�t − t�� , �19�

C�t� = �
0

t

dt�f�t��cos�t − t�� . �20�

Let us now calculate the energy E at time t of a representa-
tive point that is initially at �x0 , p0�. It is E�t�= p�t�2

2

+ �x�t�−f�t��2

2 . After some algebra, one gets

E�t� = E0 + W�t� + 2�E0W�t� cos�t −  − ��t�� , �21�

where E0 is the initial energy E0=
p0

2+x0
2

2 ,  is the initial phase
=arctan

p0

x0
, and W�t� and ��t� are defined as

W�t� =
C�t�2

2
+

�S�t� − f�t��2

2
, �22�

��t� = arctan
S�t� − f�t�

C�t�
. �23�

Starting at time ti=0 with a microcanonical ensemble of en-
ergy E0, and letting the ensemble evolve to time t, Eq. �21�
allows us to calculate the average energy of the evolved en-
semble, which in general is no longer �-distributed in the
energy space. Figure 1 shows the evolved distribution. As
will become clearer later, such distribution is merely the
classical transition probability A�� ,
 ,0 , t�. In order to cal-
culate the average energy, it is sufficient to average Eq. �21�
over the initial phase . One immediately gets

�E�E0,t = E0 + W�t� , �24�

where �·�E0,t denotes the average over the distribution that
results from the evolution �at time t� of the initial microca-
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nonical distribution of energy E0. Equation �24� tells us that
W�t� represents the work done on the ensemble at time t.

By squaring Eq. �21� and averaging over , one gets
�E�t�2�E0

. Then one easily finds

�EE0,t = �E2�t� − �E�E0,t
2 �E0,t = 2E0W�t� . �25�

Let us now turn our attention to the enclosed volume vari-
able � and its connection to the energy. Let us pick a repre-
sentative point x̃ , p̃ in phase space at a certain time t, and
draw in phase space the circular orbit H�x , p , t�=H�x̃ , p̃ , t�.
Let r̃ be the radius of such an orbit. Then r̃2

2 will be the
energy E of the system and the enclosed volume � will be
given by 2�

h E= E
� . Let us then choose the units in such a way

that �=1. Then, in this specific problem, and with units
adopted, energy and enclosed volume coincide. Thus we can
write the enclosed volume at time t, 
, in terms of the vol-
ume enclosed at time t=0, �, as


 = � + W�t� + 2��W�t� cos�t −  − ��t�� . �26�

The average enclosed volume and its square deviation read

�
��,t = � + W�t� , �27�

��
2��,t = 2�W�t� , �28�

where � and 
 are the initial and final enclosed volume,
respectively. The final entropy is given by the average over 
of the logarithm of Eq. �26�,

�ln 
��,t = �
0

2� d

2�
ln�� + W�t� + 2��W�t� cos � .

This integral is known �36� and gives

�ln 
��,t = ln�max„�,W�t�…� . �29�

Note that trivially one has

�ln 
��,t � ln � . �30�

That is, the Clausius formulation is satisfied classically in
this example even for an initial microcanonical distribution.
This means that the condition of decreasing probability �4� is

sufficient but not necessary for the classical validity of the
Clausius principle. According to Eq. �22�, W is definite posi-
tive, W�0. Since the enclosed volume is an adiabatic invari-
ant, then, for an adiabatic protocol, the final enclosed vol-
ume, i.e., the final energy, is equal to the initial one. So the

quasistatic work is zero, W̃=0. Therefore, the minimal work

principle W�W̃ is also satisfied here, regardless of whether
the initial ensemble is distributed according to a decreasing
probability or not.

The classical transition probability A�� ,
 ;0 , t� of ending
up enclosing a volume 
 from a point that initially encloses
a volume � can be easily calculated as A�� ,
 ;0 , t�
=1 / ��� d


d ��. Using Eq. �26�, we get

A��,
;0,t� =
1

�

1
�4�W�t� − �
 − � − W�t��2

. �31�

One can check that A�� ,
 ;0 , t� is doubly stochastic. The
average of any function of 
 is conveniently expressed in
terms of A as follows:

�f�
���,t = �
0

2� d

2�
f�� + W�t� + 2��W�t� cos �

=� d
A��,
;0,t�f�
� . �32�

1. Canonical initial condition

The classical canonical distribution reads

P0���d� = �e−��d� . �33�

The initial and final classical entropies are

S0
cl = ��

0

�

e−�� ln �d� , �34�

St
cl = ��

0

�

e−�� ln�max„�,W�t�…�d� . �35�

Simple calculations lead to

St
cl − S0

cl = − �W�t��
0

1

e−�W�t�x ln xdx , �36�

which is clearly positive since W�t� is positive.

B. Quantum case

The quantum transition probabilities �anm�2 are expressed
in terms of Charlier polynomials C�m ,n �W� �37�,

C�m,n�W� = �
l

max�m,n�
�− 1�lm!n!

l!�m − l�!�n − l�!Wl , �37�

�anm�t,0��2 =
e−W�t�Wm+n�t�

m!n!
�C„m,n�W�t�…�2, �38�

where W is given by the classical formula �22�. The quantum
transition probabilities have been derived by Husimi �37� by

0 2 4 6 8 10
�

0.05

0.10

0.15

0.20

0.25

0.30
A

FIG. 1. Classical transition probability, Eq. �31�, for �=2.5 and
W=1.5. The initial microcanonical distribution evolves to a
U-shaped distribution.
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solving the Schrödinger equation. An alternative derivation,
based on path-integral methods, has been given by Feynman
�34�. In order to highlight the relations between classical and
quantum transition probabilities, we offer yet another deriva-
tion based on Wigner phase-space functions in the Appendix.

The average quantum number and its square deviation
have been given by Husimi �37�. Their expressions are
analogous to the classical formulas �compare with Eqs. �27�
and �28��

�m�n,t = n + W�t� , �39�

��m2�n,t = 2�n + 1/2�W�t� , �40�

where the symbol �·�n,t denotes average over the distribution
�̂t

�n�, resulting from the temporal evolution of the initial mi-
crocanonical distribution �̂0

�n�= �n ,0��n ,0�. Equation �39� says
that W�t� is the quantum-mechanical work done on the initial
microcanonical ensemble. Note that it is exactly the same as
the classical work. Also W is determined once and for all by
the forcing function f�t� and it does not depend on the initial
state of the system. This implies that the average work is
always the same for any possible initial classical or quantum
ensemble. It is important to stress that the quantum transition
probability depends on time through W. Thus also the en-
tropy depends on time through W, which is a fundamental
quantity in this problem.

The microcanonical quantum entropy reads

�ln�m + 1/2��n,t = �
m

�anm�t��2 ln�m + 1/2� . �41�

Unlike the average quantum number and square deviation,
this does not correspond exactly to the classical expression.
Figure 2 shows the quantum and classical average microca-
nonical expectation of entropy. Unlike work, entropy does
depend on the initial quantum number n, so different entropy
changes characterize different initial ensembles. Note how
the quantum effects smooth out the sharp angle that appears
in the classical case in Fig. 2. A close inspection of Eq. �41�
shows that the Clausius principle is not satisfied in general
for the microcanonical initial condition in the quantum case,
that is,

�ln�m + 1/2��n,t � ln�n + 1/2� . �42�

This is in agreement with the discussion of possible viola-
tions of the second law given in Ref. �29�. Note that the
minimal work principle, instead, is satisfied for the microca-
nonical initial condition because, from Eq. �39�, W�0.

Figure 3 shows the dependence of the quantum expecta-
tion of entropy on the work W for a microcanonical initial
condition. Note that for small W, the entropy change is
slightly negative.

1. Canonical initial condition

Let the initial density matrix be canonical,

�̂0 = �1 − e−���
n

e−�n�n,0��n,0� . �43�

We have

St − S0 = �1 − e−���
n

e−�n��ln�m + 1/2��n,t − ln�n + 1/2�� .

�44�

Since pn is decreasing in this case, this entropy change is
non-negative.

5 10 15 20 25 30
t

1

2

3

4

5

6

7
W�t�

FIG. 4. Work as a function of time for the exponential driving
protocol in Eq. �45� with L=8, �=3. This is the same in the quan-
tum and classical cases.

5 10 15 20
n

2.2

2.4

2.6

2.8

3
�Sf�Μcan

FIG. 2. �Color online� Quantum entropy as a function of the
initial quantum number n for W=10. Solid line: classical case, Eq.
�29�. Dots: quantum case, Eq. �41�; the sum has been truncated at
m=1000. The quantum phenomena smooth out the sharp angle in
the classical graph.

n � 2 n � 3 n � 4 n � 5n � 1

1 2 3 4
W

�0.004

�0.002

0.002

0.004

0.006

�SΜcan

FIG. 3. Quantum entropy change for an initial microcanonical
condition with n=1,2 ,3 ,4 ,5, as a function of work W.
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C. Examples of driving protocols

Let us now study the actual change in expectation value
of the entropy for certain specific shapes of f�t�.

1. Exponential driving

Let

f�t� = L�1 − exp�− t/��� . �45�

Using Eqs. �19�, �20�, and �22� with Eq. �45�, we get

W�t� =
L2�1 + e−2t/� − 2e−t/� cos t�

2�1 + �2�
. �46�

The shape of W�t� is depicted in Fig. 4. Note the oscillations,
which are a consequence of the fact that the oscillator returns
some of the work to the external source of work. Nonethe-
less, the balance is always positive in accordance with the
minimal work principle. Figure 5 shows the corresponding
entropy change resulting from a microcanonical initial con-
dition. Note how the quantum curve smooths out the sharp
angle in the classical curve. The final quantum entropy is in

general larger than the corresponding classical one. Also note
that W�t� �Eq. �46�� is bounded from above. Therefore, if the
initial energy is larger than the maximum of W�t�, the clas-
sical change in expectation of entropy is null, even if the
protocol is not adiabatic. This is quite an interesting result.
Figure 6 shows the entropy change for the canonical initial
condition. Note that the classical entropy is larger than the
quantum one in this case. Again, note the oscillations due to
the fact that the oscillator returns some entropy to the exter-
nal source. This is not in contradiction with the Clausius
principle, which does not pose any condition on the mono-
tonicity of entropy as a function of time.

2. Sinusoidal driving

Let

f�t� = L sin �t . �47�

From Eqs. �19�, �20�, and �22�, we obtain

W�t� =
L2�2	cos2 t − 2 cos t cos��t� + cos2��t� + �sin t − � sin��t��2


2�− 1 + �2�2 . �48�

Figure 7 shows the profile of W for �=2. Note that if � is
not a rational number, then W is not periodic. Figure 8 shows
the entropy change resulting from a microcanonical initial
condition. Note that the classical entropy change is non-
negative, whereas the quantum entropy change is slightly
negative for certain t’s. Figure 9 shows the entropy change
resulting from a canonical initial distribution. Note that, in
agreement with the theory exposed in Sec. II, the classical
and quantum entropy changes are both non-negative.

Note that since the time dependence of entropy passes
through W, for a periodic W we also have a periodic S. So at

times multiples of the period, the work W is zero; accord-
ingly the quantum transition probability becomes a Kro-
necker � �the classical transition probability becomes a Dirac
��, and the entropy goes back to its original value. So the
system can actually go back to its original state, even if the
driving is not adiabatic. This reflects the fact that no time-
reversal symmetry breaking is involved here, and that the
inequality Sf �Si is an exact and purely mechanical inequal-
ity induced by the unitary quantum �or classical� evolution.

5 10 15 20 25 30
t

0.2

0.4

0.6

0.8

1
�SΜcan

FIG. 5. �Color online� Entropy change as a function of time for
the exponential driving protocol in Eq. �45� with L=8, �=3, and the
initial microcanonical distribution of energy E=n+1 /2 with n=2.
Solid green line, classical case, Eq. �29�. Blue dashed line, quantum
case, Eq. �41�; the summation is truncated at m=100.
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FIG. 6. �Color online� Entropy change as a function of time for
the exponential driving protocol in Eq. �45� with L=8, �=3, and the
initial canonical distribution of inverse temperature �=2. The ca-
nonical distribution is truncated at n=20. Solid green line, classical
case, Eq. �29�. Blue dashed line, quantum case, Eq. �41�; the sum-
mation is truncated at m=100.
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3. On/off switching protocol

Let us conclude this section by studying a switching pro-
tocol in which the external source is turned on and off in a
finite time. Let us consider the following driving protocol:

f�t� = �L sin �t 0 � t � �/�
0 otherwise.

� �49�

Let us focus on the time T=� /� at which the driving is
turned off. We shall refer to T as the switching time. From
Eq. �48�, we get

W�T� =
L2�2T2�1 + cos T�

��2 − T2�2 . �50�

Figure 10 shows the quantum and classical entropy
change resulting from the force �49� as a function of switch-
ing time T=� /� for the microcanonical initial condition.
Note that, as expected, the change in entropy goes to zero in
the adiabatic limit T→�. For T larger than a certain thresh-
old value, the classical entropy change is exactly null. Cor-
respondingly, the quantum entropy change becomes approxi-
mately null and oscillates around zero, thus getting positive
and negative values. Note also, in analogy with the previous
discussion concerning the exponential driving, that the func-
tion W�T� is bounded from above W�T��cL2. Thus, for a
given initial energy � and amplitude L, if L is not suffi-

ciently large, the change in classical entropy remains zero for
all values of switching time T In fact, one has L
��� /c⇒W�T���⇒ �ln 
��=ln � , ∀T.

Figure 11 shows the quantum and classical entropy
change for the canonical initial condition. Evidently, the
change in entropy goes to zero as the switching time in-
creases �adiabatic limit�. Note also the oscillatory behavior
of the entropy change as a function of T. Interestingly
enough, the change in entropy vanishes for T=3� ,5� ,7�.
This is because the work is also zero for those values �see
Eq. �50��.

Note that, in accordance with Eqs. �15� and �16�, the en-
tropy change is non-negative for the canonical initial condi-
tion �see Figs. 6, 9, and 11�.

IV. DISCUSSION

We have reviewed here the quantum-mechanical proof of
the Clausius principle based on Boltzmann entropy, and we
have applied it to a specific model, namely the driven har-
monic oscillator.

One interesting feature that we have noticed is that the
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FIG. 7. Work as a function of time for the sinusoidal driving
protocol in Eq. �47� with L=3 /2, �=2.
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FIG. 8. �Color online� Entropy change as a function of time for
the sinusoidal driving protocol in Eq. �47� with L=3 /2, �=2, and
the initial microcanonical distribution of energy E=n+1 /2 with n
=2. Solid green line, classical case, Eq. �29�. Blue dashed line,
quantum case, Eq. �41�; the summation is truncated at m=100.
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FIG. 9. �Color online� Entropy change as a function of time for
the sinusoidal driving protocol in Eq. �47� with L=3 /2, �=2, and
the initial canonical distribution of inverse temperature �=2. The
canonical distribution is truncated at n=20. Solid green line, clas-
sical case, Eq. �29�. Blue dashed line, quantum case, Eq. �41�; the
summation is truncated at m=100.
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FIG. 10. �Color online� Entropy change for the force in Eq. �47�
with L=6, n=2, as a function of switching time T, for the initial
microcanonical condition. Solid line: classical case, Eq. �29�, with
�=n+1 /2=5 /2. Dashed line: quantum case, Eq. �41�; the summa-
tion is truncated at m=1000.
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Clausius principle is satisfied classically in this example
even in the microcanonical ensemble, thus showing that the
requirement of decreasing probabilities is sufficient but not
necessary in the classical case. This is in agreement with the
work of �11�, where a general proof of the increase of the
classical Boltzmann entropy has been given for high-
dimensional classical chaos and initial microcanonical distri-
bution. The same work also reports numerical evidence of an
increase of entropy for time-dependent low dimensional clas-
sical Fermi-Pasta-Ulam chains initially at a microcanonical
condition. Thus we expect this to be quite a general condi-
tion that applies to systems with an energy spectrum that has
a lower bound but no upper bound. Instead, the quantum
entropy change may be negative when starting from a micro-
canonical condition. As can be seen from the graphs, the
quantum entropy change may become slightly negative, thus
the Clausius principle is satisfied quantum mechanically only
approximately, when starting from the microcanonical en-
semble.

On the other hand, the Clausius principle is always satis-
fied when starting from the canonical ensemble, or any other
ensemble characterized by a decreasing distribution.

The example of the driven harmonic oscillator has also
shown how the Boltzmann entropy and the work, when con-
sidered as functions of time, are not monotonic increasing.
Although the total balances of work and entropy stay non-
negative in accordance with the minimal work principle and
the Clausius principle, the system may return some amount
�or even all� of the work and entropy to the external source.
A similar nonmonotonicity was found in a related study on
forced oscillators �33�.

Interestingly, while the quantum work coincides with the
classical work in the driven harmonic oscillator, the classical
and quantum entropy changes do not �Fig. 2�. In particular,
the change in entropy may turn out to be null even in cases in
which the work is not null for the initial microcanonical
condition. Thus, interestingly, it is possible to implement iso-
entropic driving protocols that are neither quasistatic nor iso-
energetic.

Another interesting feature of the driven harmonic oscil-
lator is that when the driving force is sinusoidal with a ratio-
nal ratio between the driving force frequency and the oscil-

lator frequency, both work and entropy are periodic. In fact,
the system returns periodically to its original state, and ac-
cordingly the entropy change and work return to zero peri-
odically. Such behavior of entropy and work is not in con-
trast with the second law as formulated by Clausius and
Thomson. Furthermore, it provides an example of a process
that is at the same time non-quasi-static and reversible. This
helps to clarify the fact, already pointed out in �8�, that re-
versibility and quasistaticity are quite distinct concepts.

The results presented here concerning the increase of en-
tropy in a quantum forced harmonic oscillator can be tested
experimentally by means of multisegmented optical ion traps
of the type described in �13�.

ACKNOWLEDGMENTS

Support award from the Texas Section of the American
Physical Society is gratefully acknowledged.

APPENDIX A: CALCULATION OF QUANTUM
TRANSITION PROBABILITIES WITH WIGNER

FUNCTIONS

In order to appreciate the connection between the classical
transition probabilities A�
 ,� , ti , tf� and the quantum transi-
tion probability, we calculate the latter using the Wigner
functions of the system’s eigenstates. For the eigenstates of
the simple harmonic oscillator H�p ,x�= p2 /2+x2 /2, the
Wigner functions read �35�

W�m��x,p� =
�− 1�m

�
exp	− �p2 + x2�
Lm	2�p2 + x2�
 ,

�A1�

where Lm denote the Laguerre polynomials. Since the Hamil-
ton function of the driven harmonic oscillator reads
H�p ,x , t�= p2 /2+ �x− f�t��2 /2, the Wigner function associ-
ated with the instantaneous eigenvector �m , t� can be derived
from W�m� by means of a translation along the x axis,

W�m,t��x,p,t� =
�− 1�m

�
exp„− 	p2 + �x − f�t��2
…

�Lm„2	p2 + �x − f�t��2
… . �A2�

Now, from Eq. �5� we have

�akm�0,t��2 = ��m,t��k�t���2, �A3�

where ��k�t��� Û�0, t��k ,0�. Using the properties of Wigner
functions �35� �and recalling that we have set �=1�, we can
rewrite Eq. �A3� as

�akm�0,t��2 = 2�� dp dx W�m,t��x,p,t�W��k�t���x,p,t� ,

�A4�

where W��k�t���x , p , t� is the Wigner function associated with
the state ��k�t��. The function W��k�t���x , p� can be easily cal-
culated by evolving the function W��k,0��x , p� according to the
classical evolution in phase space. This is because the evo-
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FIG. 11. �Color online� Entropy change for the force in Eq. �47�
with L=6, �=2, as a function of switching time T, for the initial
canonical distribution. The canonical distribution is truncated at n
=100. Solid line: classical case, Eq. �29�, with �=n+1 /2=5 /2.
Dashed line: quantum case, Eq. �41�; the summation is truncated at
m=1000.
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lution of Wigner functions is dictated by the classical Liou-
ville equation in the case of quadratic potentials �35�. Thus

W��k�t���x,p,t� = W�m�„x0�x,p,t�,p0�x,p,t�… , �A5�

where (x0�x , p , t� , p0�x , p , t�) is the point in phase space at
time t=0 that evolves to �x , p� in the time t. In the case of the
driven harmonic oscillator, by inverting Eq. �18� we have

�x0

p0
� = �cos t − sin t

sin t cos t
�� x − S�t�

p − C�t�
� . �A6�

Therefore,

�akm�0,t��2 = 2
�− 1�m+k

�
� dp dx e−2��x−f t,p�Lm„4��x − f t,p�…

�e−2��x−St,p−Ct�Lk„4��x − St,p − Ct�… , �A7�

where ��y ,q��
y2+q2

2 , and f t ,Ct ,St are short-hand notations
for f�t� ,C�t� ,S�t�. Applying the change of variables x�=x
−St, p�= p−Ct,

�akm�0,t��2 = 2
�− 1�m+k

�
� dp�dx�e−2��x�+St−f t,p�+Ct�

�Lm„4��x� + St − f t,p� + Ct�…

�e−2��x�,p��Lk„4��x�,p��… . �A8�

Let us pass to the “enclosed volume”-angle variables � ,
�that is, the action-angle variables�, defined from x�
=�2�cos , p�=�2�sin . Simple calculations lead to

�akm�0,t��2 = 2
�− 1�m+k

�
�

0

�

d�e−2�Lk�4��

��
0

2�

de−2��+W�t�+2��W�t�sin �

�Lm„4�� + W�t� + 2��W�t�sin �… .

�A9�

Now, using Eq. �32� and defining

um�x� = 2�− 1�me−2xLm�4x� , �A10�

we get

�akm�0,t��2 = �
0

�

d��
0

�

d
uk���A��,
;0,t�um�
� .

�A11�

Thus the quantum transition probabilities are the coefficients
of the double expansion of the classical transition probabili-
ties over the Laguerre basis 	um���uk�
�
. In order to prove

that the expression in Eq. �A11� is equal to the expression in
Eq. �38�, we calculate the double generating function of both
and show that they are equal. The double generating function
is defined as

g��,�;W� � �
n,m=0

�

�n�m�amn�W��2, �A12�

where for simplicity we omitted the dependence on time of
amn and we made the dependence on W explicit. Using the
Laguerre polynomials generating function,

�
k=0

�

�kLk�W� =
e−��/�1−���W

1 − �
, �A13�

one finds from Eq. �A9�

g��,�;W� =
e���−1���−1�/���−1��W

1 − ��
. �A14�

The calculation involves the use of the following integrals
�36�: �0

2�dea cos =2�I0�a� and �0
�dxebxI0��x�=− e−1/4b

b ,
where I0�x� is the Bessel I function of order 0.

On the other hand, the generating function associated with
the expression in Eq. �38� can be obtained by expressing the
Charlier polynomials in terms of the associated Laguerre
polynomials Ln

�s� as �38�

C�n,m�W� = �− W�−nn!Ln
�m−n��W� . �A15�

In terms of associated Laguerre polynomials, then, Eq. �38�
becomes

�amn�W��2 = e−W�− 1�m+nLn
�m−n��W�Lm

�n−m��W� . �A16�

Using the double generating function of the associated La-
guerre polynomials �39�

�
n,m=0

�

�n�mLm
�n−m��W�Ln

�m−n��W� =
e−��2��+�+��/�1−����W

1 − ��
,

�A17�

and accounting for the sign change of � and � stemming
from the term �−1�m+n in Eq. �A16�, one immediately recov-
ers Eq. �A14�. We deduce that

�amn�0,t��2 = �
0

�

d��
0

�

d
um���A��,
;0,t�un�
�

=
e−W�t�Wm+n�t�

m!n!
�C„m,n�W�t�…�2, �A18�

thus recovering the known result.
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